Chapitre 1 : Nombres réels

I) L'ensemble des réels

a) Droite des réels

Définition: N : Entiers naturels $\{0; 1; 2; 3; 4; 5; 6; \ldots\}$

 \mathbb{Z} : Entiers relatifs {...-2; -1; 0; 1; 2; ...}

D : Décimaux {-1,25; 3,784; 2; -4; ...}

 \mathbb{Q} : Rationnels aussi appelés quotients $\{\frac{2}{3}; 2,5=\frac{5}{2}; 2=\frac{2}{1}...\}$

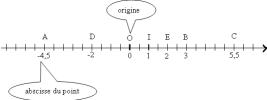
 \mathbb{R} : Réels {tous les nombres} c'est ici que l'on mettra π

On a donc par définition:

$$\mathbb{N}\subset\mathbb{Z}\subset\mathbb{D}\subset\mathbb{Q}\subset\mathbb{R}$$

Le symbole ⊂ *se lit "est inclus dans"*

On peut placer tous les nombres sur une droite que l'on nommera droite des réels ou encore axe des abscisses.



Les points sont alors repérés par leurs abscisses : A (-4,5)

L'échelle (les graduations) est bien sûr adaptée en fonction de la situation.

b) Les intervalles

La double inégalité $-5 \le x \le 7$ se lit x est compris entre -5 et 7.

Si on regroupe tous les nombres qui vérifient cette inégalité, nous obtenons un ensemble que l'on appellera intervalle et que l'on notera : I = [-5;7]

La double inégalité initiale s'écrit alors $x \in [-5, 7]$ x appartient à l'intervalle [-5,7]

On peut la représenter graphiquement sur un axe des abscisses :

Remarque : Si l'inégalité est stricte, il faudra exclure la borne correspondante. *on ouvre le crochet* Si l'inégalité est large, il faut inclure la borne. (on " l'agrafe ") *on ferme le crochet*

On peut distinguer trois sortes d'intervalles :

- les intervalles **fermés** où les deux bornes sont incluses : [-5;7]
- les intervalles **ouverts** où les deux bornes sont exclues :]-5;7[
- les intervalles semi-ouverts où l'une des bornes est exclue et l'autre est incluse :]-5;7]

Pour représenter les ensembles définis par une inégalité simple, on introduit le symbole infini : Attention, ce symbole n'est pas un nombre et ne peut jamais être inclu dans un intervalle.

$$x \in [-5; +\infty[$$

$$x \ge -5$$

$$x \in]-\infty$$
; 7[

c) Valeur absolue

Définition:

La valeur absolue d'un nombre est la distance sur l'axe des réels entre ce point et l'origine.

Si
$$x \ge 0$$
 alors $|x| = x$

Si
$$x < 0$$
 alors $|x| = -x$

- La valeur absolue "enlève" le signe moins

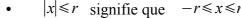
- Pour calculer la distance entre deux points A(a) et B(b) sur l'axe des réels, on utilise

la valeur absolue :
$$d(A, B) = |b-a|$$

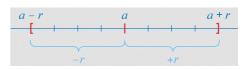
-
$$\forall x, y; |x-y| = |y-x|$$

Propriété:

Soit r un réel strictement positif et un point A (a). Pour tout réel x :



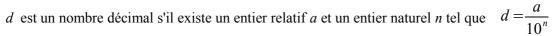
•
$$|x| \le r$$
 signifie que $-r \le x \le r$
• $|x-a| \le r$ signifie que $a-r \le x \le a+r$



II) Décimaux et rationnels

a) Décimaux

Définition:



 $\frac{1}{3}$ n'est pas décimal

On raisonne par l'absurde en supposant que $\frac{1}{3}$ est un nombre décimal. (et on va montrer que c'est faux!)

Il existe donc un entier relatif a et un entier naturel n tel que $\frac{1}{3} = \frac{a}{10^n}$

Ainsi
$$1 \times 10^{n} = 3 \times a$$
 et $a = \frac{10^{n}}{3}$.

Or, une puissance de 10 n'est jamais divisible par 3, puisque la somme de ses chiffres vaut toujours 1, donc la fraction $\frac{10^n}{3}$ n'est pas entière et <u>a n'est pas entier</u>. Cela contredit la première hypothèse.

Finalement, $\frac{1}{3}$ n'est pas un nombre décimal.

Propriété:

Un nombre décimal a une partie décimale qui peut s'écrire avec un nombre fini de chiffres.

Définition - propriété :

Pour tout réel x et tout entier naturel n, il existe un nombre décimal d tel que :

$$|x-d| \leq \frac{1}{10^n}$$

d est alors appelé valeur approchée de x à 10^{-n} près.

Remarque: - Il n'y a pas unicité de la valeur approchée.

- Chercher une valeur approchée à 10^{-n} près revient à chercher un nombre à *n* décimales

b) Rationnels

Définition:

Un nombre q est rationnel s'il existe deux entiers relatifs a et b (avec $b \neq 0$) tels que $q = \frac{a}{b}$

Démonstration:

$$\sqrt{2}$$
 n'est pas rationnel

On raisonne par l'absurde en supposant qu'il existe deux entiers naturels a et b (avec $b \ne 0$) tels que $\sqrt{2} = \frac{a}{b}$ et que $\frac{a}{b}$ soit irréductible.

En élevant au carré, $2 = \frac{a^2}{b^2} \Leftrightarrow 2b^2 = a^2$, nous en concluons que a est pair.

Ainsi $2b^2 = a^2 = (2a')^2 = 4a'^2$ et en divisant par 2 $b^2 = 2a'^2$, nous en concluons que b est pair.

Puisque a et b sont pairs tous les deux, la fraction $\frac{a}{b}$ n'est pas irréductible ce qui contredit l'hypothèse.

Finalement, $\sqrt{2}$ n'est pas rationnel

III) Inégalités

$$a,b,c,d,x,y \in \mathbb{R}$$

a) Ordre dans R

Propriété:

Si
$$a < b$$
 et $b \le c$ alors $a \le c$

b) Opérations

On peut ajouter (ou soustraire) un réel : $a < b \Leftrightarrow a + c \leqslant b + c$

On peut ajouter (et pas soustraire) deux inégalités membre à membre si elles ont le même sens :

Si
$$a < x < b$$
 et $c < y < d$ alors $a + c < x + y < b + d$

On peut multiplier (ou diviser) par un nombre strictement positif chaque membre :

Si b > 0 alors
$$x < y \Leftrightarrow b \times x < b \times y$$

On peut multiplier (ou diviser) par un nombre strictement négatif chaque membre MAIS il faut alors changer le sens de l'inégalité :

Si b < 0 alors
$$x < y \Leftrightarrow b \times x > b \times y$$

IV) Compléments sur intervalle

a) Intersection d'intervalles

Les réels appartenant à la fois à l'intervalle [8;16[et à l'intervalle]6;10[sont tous les réels de l'intervalle [8;10[.

On dit que l'intervalle [8;10[est l'intersection des intervalles [8;16[et]6;10[.

On notera $[8;16[\cap]6;10[=[8;10[$ Le symbole \cap se lit "inter" et signifie intersection

4 6 8 10 12 14 16 18 20 22

b) Réunion d'intervalles

Les réels appartenant soit à l'intervalle [10;12], soit à l'intervalle]12;16] (ou dans les deux) sont les réels de l'intervalle [10;16].

14

On dit que l'intervalle [10;16] est la réunion des intervalles [10;12] et]12;16]

On notera $[10; 12] \cup]12; 16[=[12; 16]$ Le *U* se lit "union"