Chapitre 7: Résolution graphique

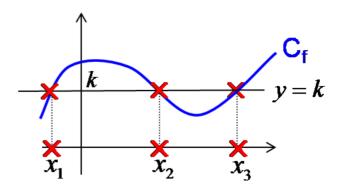
Vous avez vu quelques fonctions de références mais ce ne sont que les plus simples. Dans ce chapitre, nous allons résoudre des problèmes à l'aide des graphiques des fonctions.

I) Equations de type f(x)=k ou f(x)=g(x)

Résoudre l'équation f(x)=k, c'est trouver tous les antécédents de k par f.

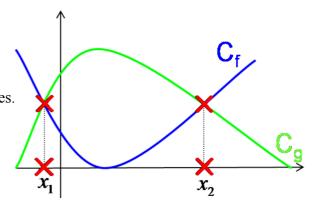
Il faut tracer la droite horizontale passant par *k*.

$$S = \{x_1; x_2; x_3\}$$



Résoudre l'équation f(x)=g(x), c'est trouver tous les nombres ayant la même image par f et g. Il faut chercher les points d'intersections des deux courbes.

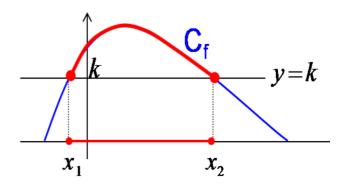
$$S = \{x_1; x_2\}$$



II) Inéquations de type $f(x) \le k$ ou $f(x) \le g(x)$

Résoudre l'équation $f(x) \ge k$, c'est trouver tous les nombres dont l'image est par f est supérieure à k. Il faut tracer la droite horizontale passant par k.

$$S = [x_1; x_2]$$

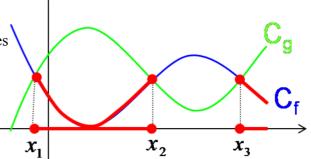


Résoudre l'équation $f(x) \le g(x)$:

Il faut chercher les points d'intersections des deux courbes et chercher où la courbe de f est en dessous de la

courbe de *g*.

$$S = [x_1; x_2] \cup [x_3; +\infty[$$



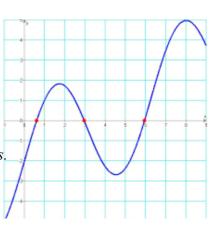
Remarque

Si les inégalités sont strictes, les intervalles sont ouverts.

III) Etude de signe

Définition:

Les **racines** d'une fonction sont les points où la fonction s'annule. Il faut résoudre l'équation f(x)=0 ce qui revient à chercher les abscisses des points d'intersection de la courbe de f avec l'axe des abscisses. On parle aussi des zéros de la fonction ou des racines de la fonction.



Définition:

On dit que f est **positiv**e sur [a,b] si et seulement si $\forall x \in [a,b], f(x) \ge 0$

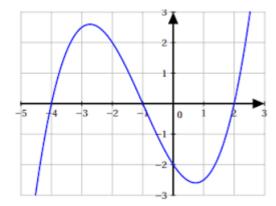
On définit de même une fonction négative, strictement positive, strictement négative.

Etudier le signe d'une fonction c'est déterminer, si possible, les intervalles où la fonction est positive et les intervalles où la fonction est négative.

Il faut pour cela résoudre l'inéquation $f(x) \ge 0$. Usuellement, on note la réponse sous la forme d'un tableau plutôt que de faire des phrases qui peuvent être longues (trop longues ...)

Application

Quel est le signe de la fonction f dont la courbe est tracée ci-dessous ?



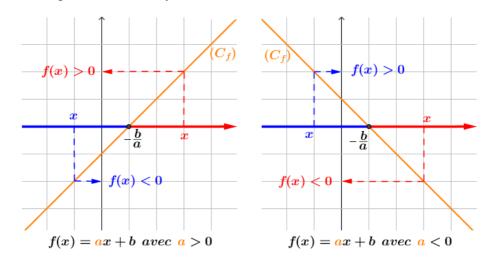
On cherche les racines, -4 ; -1 et 2. Puis on dresse un tableau de signes :

x	-∞		-4		-1		2		+∞
f(x)		-	o	+	0	-	0	+	

IV) Fonctions affines

Si a = 0, alors la fonction affine est constante. Elle est toujours du signe de b.

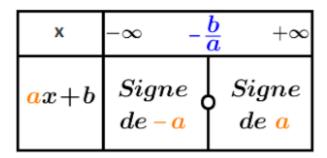
Si la fonction n'est pas constante, il y a alors deux cas :



Graphiquement, on peut conjecturer la propriété suivante.

Propriété:

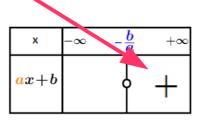
Le tableau de signe d'une fonction affine f(x)=ax+b est



Démonstration

Cas où a > 0:

$$f(x) > 0 \Leftrightarrow ax + b > 0 \Leftrightarrow ax > -b \Leftrightarrow x > \frac{-b}{a}$$



Cas où a < 0:

$$f(x) > 0 \Leftrightarrow ax + b > 0 \Leftrightarrow ax > -b \Leftrightarrow x < \frac{-b}{a}$$

on change de sens car a négatif

