Variables aléatoires

Exercice 1

On note X la variable aléatoire qui, à chaque jour, associe le nombre de voitures neuves vendues par un concessionnaire.

Sa loi de probabilité est donnée par le tableau suivant :

Valeur x_i	0	1	2	3
Probabilité $p(X = x_i)$	0,45	0,3	0,15	p

- 1. Donner la probabilité p(X = 1).
- **2**. Calculer $p(X \le 1)$.
- 3. Calculer le réel p.

Exercice 2

La loi de probabilité d'une variable aléatoire ${f X}$ est donnée par le tableau suivant :

Déterminer : **a.** P(X = 1)

b. $P(X \le 4)$ **c.** P(X < 4) **d.** P(X > 2)

Déterminer l'espérance E(X)

Exercice 3

La loi de probabilité d'une variable aléatoire X est donnée par le tableau suivant :

- **1.** Déterminer la probabilité de l'événement $(X \ge 3)$.
- 2. Quelle est la valeur manquante ?

Exercice 4

G est la variable aléatoire qui donne le gain en euro d'un joueur à un jeu. La loi de probabilité de G est donnée par le tableau suivant :

x_i	-10	0	5	10	20
$P(G = x_i)$	0,4	0, 1	0, 2	0,1	0, 2

- a. Déterminer E(G)
- b. Modifier la valeur -10 du tableau pour rendre le jeu équitable.
- c. Proposer une autre méthode simple pour rendre le jeu équitable en modifiant tous les gains, sans que les gains soient tous nuls.

Exercice 5

Le coût de production d'un objet est de 950 €. Cet objet peut présenter un défaut A, un défaut B, ou bien en même temps le défaut A et le défaut B. La garantie permet de faire des réparations aux frais du fabricant avec les coûts suivants :

100 euros pour le défaut A et 150 euros pour le défaut B. On admet que 90% des objets produits n'ont aucun défaut, 5% ont au moins le défaut A, et 4% ont les deux défauts A et B.

- 1. A l'aide d'un tableau, déterminer la proportion des objets ayant au moins le défaut B.
- 2. On note X la variable aléatoire qui, à chaque objet choisi au hasard, associe son prix de revient réel. Déterminer la loi de probabilité de X.
- 3. Calculer l'espérance mathématique E(X) de cette variable aléatoire. Interpréter le résul-
- On admet que tous les objets produits sont vendus.
 - (a) L'usine peut-elle espérer réaliser des bénéfices en vendant 960 € chaque objet vendu?
 - (b) L'usine veut réaliser un bénéfice moven de 100 € par objet. Expliquer comment doit-on alors choisir le prix de vente de l'objet produit.

Exercice 6

Considérons le jeu suivant :

Il faut payer 5€ pour tourner la roue.

On gagne $20 \le$ si le bleu sort, $10 \le$ si le vert sort, $3 \le$ si jaune sort et rien du tout si le rouge sort.

Ce jeu est-il intéressant pour un casino?

Exercice 7

Lors des journées classées « rouges » selon Bison Futé, l'autoroute qui relie Paris à Marseille est surchargée. Bison Futé a publié les résultats d'une étude portant sur les habitudes des automobilistes sur le trajet Paris Marseille lors de ces journées « rouges ». Il s'avère que :

- · 40% des automobilistes prennent l'itinéraire de délestage entre Beaune et Valence,
- Parmi les automobilistes ayant suivi l'itinéraire de délestage entre Beaune et Valence, 30% prennent la route départementale de Valence à Marseille,
- Parmi les automobilistes n'ayant pas suivi l'itinéraire de délestage entre Beaune et Valence, 60% prennent la route départementale entre Valence et Marseille. On donne les temps de parcours estimés lors de ces journées classées « rouge ».
 - Paris/Beaune par autoroute : 4 heures,
 - Beaune/Valence par autoroute : 5 heures,
 - · Beaune/Valence par itinéraire de délestage : 4 heures,
 - · Valence/Marseille par autoroute : 5 heures,
 - · Valence/Marseille par la route départementale : 3 heures.
- 1) Déterminer la loi de probabilité de la variable aléatoire égale à la durée du trajet pour se rendre de Paris à Marseille.
- 2) Calculer l'espérance de cette variable aléatoire et en donner une interprétation.

Exercice 8

On considère une urne comportant des boules de couleur verte, jaune ou bleue et sur lesquelles sont inscrites des motifs (croix ou triangle). Il y a 80 boules dans l'urne dont 10 sont vertes avec des croix. La composition globale de l'urne est donnée par le tableau suivant.

	Verte	Jaune	Bleue	Total
Croix	10	30	12	52
Triangles	10	10	8	28
Total	20	40	20	80

On mise 100 € puis on tire au hasard une boule dans l'urne. On gagne 200 € si c'est une boule verte avec des croix, 150 € si c'est une boule verte avec des triangles, 120 € si c'est une boule bleue avec des croix, et on ne gagne rien dans tous les autres cas.

Déterminer la loi de probabilité d'une variable aléatoire Y modélisant la situation.